Centrifugal, Magnetic Bearing, Compressor Water Chiller

Model WMC-035T, 110 to 175 Tons

3/60/460, 3/50/400
R-134a
Cutaway View of Magnetic Bearing Compressor, Nominal 75 Tons

MicroTech II® Controller, Operator Interface, Home Screen
Table of Contents

THE NEW COMPRESSOR TECHNOLOGY.....4
- Next Generation Centrifugal – Here Today........4
- Low Operating Costs..4
- Environmental Responsibility5
- Greater Reliability ...6
- Exceptional Control...6
- Reduced Installation Costs7
- The Compressor Technology................................8

Control Features ...9
- Control Architecture...9
- Communication Capabilities14

Unit Design Features.................................16
- Variable Frequency Drive.....................................16
- HFC-134a:...16
- Heat Exchangers..16
- Pumpdown...17
- Electronic Expansion Valve17
- Flow Switch...17
- Factory Performance Test................................17
- McQuay Factory Service Startup........................18
- Part Load Efficiency..18
- Compliance with ASHRAE 90.118

ARI Certification ...19
Chiller Identification21
Physical Data and Weights..............................22
- Relief Valves...23

Pressure Drop Curves24
Sound Data..25
Dimensions...26
Electrical Data..30
- Electrical..30
- Power Wiring..30
- Control Wiring..31

Application Considerations............................35
- System Water Volume36
- System Pumps..37
- Use with On-Site Generators................................37
- Optimum Water Temperatures and Flow38
- Operating Limits:...39

Options and Accessories...............................39
- Refrigerant Monitors ...41
- Warranty Statement..42
- Specifications...43

Manufactured in an ISO Certified Facility

<table>
<thead>
<tr>
<th>Document:</th>
<th>Catalog WMC-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue Date:</td>
<td>December 2005</td>
</tr>
<tr>
<td>Replaces:</td>
<td>Catalog WMC</td>
</tr>
</tbody>
</table>

Information covers McQuay International products at the time of publication and we reserve the right to make changes in design and construction at anytime without notice.

®™ The following are trademarks or registered trademarks of their respective companies: BACnet from ASHRAE; LONMARK and LONWORKS from Echelon Corporation; McQuay and MicroTech II from McQuay International.
Next Generation Centrifugal – Here Today

The industry’s next generation of centrifugal chillers is here today with McQuay’s model WMC. The new technology begins with centrifugal compressors utilizing magnetic bearings for oil free operation, integral variable frequency drives, and high-speed direct drive technology. The high efficiency compressor is matched with highly efficient heat exchange vessels to make an impressive chiller. The control system is based on McQuay’s MicroTech II® family to provide the optimum chiller control system. We invite you to look at the differentiating features and benefits that compare to older compressor technologies.

Compressor Major Running Gear Components

![Diagram of Compressor Major Running Gear Components](image)

Low Operating Costs

Shrink Your Utility Costs

Great full load performance. Although many chillers claim good full load performance, the WMC has the “numbers” to support our claims. The WMC has a full load performance as low as 0.62 kW/ton at the ARI standard rating point. Typical values for screw compressor chillers are 0.72 kW/ton or 0.80 kW/ton for reciprocating chillers. This improvement in efficiency provides a significant operating cost savings.
Outstanding Part Load Performance
Perhaps we should have discussed the outstanding part load efficiency first. The WMC Integrated Part Load Value (IPLV) is as low as 0.375 kW/Ton. Compare this performance with most screw compressor chillers with approximately 0.575 kW/Ton. Performance for reciprocating chillers is less attractive. There is a potential for up to 40% energy savings at part load compared to other chillers.

Virtually Eliminate Maintenance Costs
There is nothing to do except occasionally clean the tubes and enjoy the chiller. With oil removed from the system, oil samples, oil change-outs, oil system maintenance, oil filter changes are all history. The bearing system, shafting and impellers are shown to the right.

Environmental Responsibility

Very Low Sound Levels
Perhaps the WMC’s extremely low sound levels should have been the first benefit discussed. The WMC is perfect for sound sensitive applications, with sound pressure levels as low as 77 dBA at one meter from the unit. The only way to appreciate how quiet these units are is to hear one operate! It is important to compare the sound data in this catalog to other offerings. Remember that a sound pressure difference of only two to three dBA is a very noticeable difference.

The Refrigerant Solution – R-134a
The WMC uses R-134a refrigerant. It does not have a phase-out date and is used to replace several of the refrigerants that have been, or will be, phased out. R134a is used in many very efficient chillers and does not attack the ozone layer in the atmosphere.

Extremely Low Vibration Levels
As a result of the high-speed design, the compressor vibration levels are extremely low, minimizing vibration that could be transmitted to the structure. The unit is shipped with rubber mounting pads and spring vibration isolators are not required.
Greater Reliability

Oil Handling Equipment Removed
With magnetic bearings operating in a magnetic electrical field instead of oil lubricated ball or roller friction type bearings as the basis of design, the oil handling equipment is removed for great reliability. There is no need to have oil pumps, oil reservoirs, controls, starter, piping, heaters, oil coolers, oil filters, water regulating valves or oil relief valves that are needed to maintain oil quality. These devices can be a source of problems in tradition chillers. Removing them significantly increases unit reliability.

Dual Compressors Utilizing One Refrigerant Circuit
System reliability is improved by having two compressors operating on a common refrigerant circuit. In the event of a mechanical or electrical problem (excluding the rare motor burn), one of the two compressors will continue to operate until repairs can be made. The chiller can continue to provide up to sixty percent of full load tons. Also, the two compressors in a single refrigerant circuit are one of the secrets for the tremendous part load efficiency. At part load where most of the operating hours occur, the entire vessel surface is active providing extremely efficient operation.

Exceptional Control

User friendly Touch Screen Operator Panel
Every WMC chiller is provided with the user-friendly operator interface touchscreen panel mounted on the moveable positioning arm for easy operation. View chiller operation, clear faults and change parameters by merely touching the screen. For added convenience, the unit operating and maintenance manual is viewable on the screen and can also be downloaded via the USB port located in the control panel.
Flexible BAS Interface Modules

Every WMC chiller can be provided with your choice of LONMARK®, BACnet® or Modbus® interface modules for an easy, low cost connection to the building automation system of your choice. Expensive and complex interface gateways are no longer required. Modules can also be easily retrofitted after installation.

The compact LONMARK® module that is installed in the microprocessor is shown to the left, with a quarter to show relative size.

Variable Frequency Drives

Compressor unloading and subsequent chiller capacity reduction is accomplished by a compressor-mounted variable frequency drive. It operates in conjunction with the inlet guide vanes. The VFDs are an important factor in providing the tremendous energy savings at part load operation.

Reduced Installation Costs

Compact Design Fits Through a 3-Foot Wide Door

The compact design allows installers to easily move a WMC into an equipment room through a three-foot wide door. This feature saves the cost of removing walls and expanding doorways to maneuver the unit into its final location.

In particularly tight rigging situations, the unit can be shipped knocked-down to save disassembly cost at the job site.

Line Reactor Included, Harmonic Filter and EMI Filter Optional

Each compressor has a line reactor mounted in the compressor’s power panel and included as standard equipment. See page 33 for more information.
The Compressor Technology

The advanced, magnetic bearing, permanent magnet synchronous motor technology used in the WMC chillers offers many owner benefits.

Totally Oil-Free Operation

The friction losses and the oil management hardware and controls associated with conventional oil-lubricated bearings are now totally eliminated. Modern magnetic bearing technology enables outstanding energy efficiency and reliable, long-life frictionless operation. The compressor’s one moving part (rotor shaft and impellers) is levitated during rotation by a digitally controlled magnetic bearing system consisting of two radial and one axial magnetic bearing. Position sensors at each magnetic bearing provide real-time feedback to the bearing control system.

Variable Frequency Drives for Ultra-Low IPLV

The well-proven energy performance advantages of large central plant type variable-speed centrifugal chiller compressors are now brought to mainstream, middle-market applications through the use of high-speed, centrifugal compression with integral variable-speed drive. The compressor speed reduces as the condensing temperature and/or cooling load reduces, optimizing energy performance through the entire operating range. Movable inlet guide vanes redirect gas flow into the first stage impeller during very low loads, after the compressor has reached minimum speed.

Ultra-Smart

The chillers utilize digital control electronics to proactively manage unit operation, while providing control of external circulating pumps and the cooling tower. Web-enabled monitoring accesses a full array of performance and reliability information.

1. Magnetic Bearings and Bearing Sensors
2. Permanent Magnet Synchronous Motor
3. Touchdown Bearings
4. Shaft and Impellers
5. Compressor Cooling

Easy To Work With...

Easy on product cost - This frictionless magnetic bearing design needs no oil management system. With no oil to coat the heat transfer surfaces, a gain in heat exchanger efficiency can be realized.

Easy on the ears - A compressor sound level less than 73 dBA, with virtually no structure-borne vibration, eliminates the need for expensive attenuation accessories.

Easy to handle - The compressor weight of 264 lbs. (120 kg.) is less than 20% of the weight of competitive compressors and approximately 50% smaller, so it can mount on lighter and smaller frames.

Easy refrigerant choice - The compressor is optimized for HFC-134a, the positive pressure, environmentally and operator safe refrigerant that is the first choice in the industry.

Easy to control - Onboard digital electronics provide smart controls. The compressor is totally self-correcting and incorporates a system of sophisticated self-diagnostics, monitoring and control.

Easy on power interruptions - In the event of a power failure, the compressor motor acts as a generator, providing power for the bearing control system during coast down. It also has a system to gently de-levitate the shaft.
Control Features

WMC Chillers Feature MicroTech II® Controls
It is only fitting that the world’s most revolutionary chiller design be matched with the advanced McQuay MicroTech II microprocessor technology to give you the ultimate in chiller performance and control. The control includes many energy-saving features and interface enhancements not found in any other microprocessor system on the market today. MicroTech II controller's innovative design will help keep your chiller running efficiently . . . day in, day out, for years to come.

Control Architecture
The WMC chiller takes advantage of McQuay’s 30 years of experience in designing and manufacturing their highly regarded WDC line of conventional, dual centrifugal compressor, chillers. Distributed control components operating on a pLAN (local area network) provide flexibility and redundancy.

The operator interface panel has a 12-inch Super VGA touch-screen, utilizing graphics to provide clear and concise information on the chiller operation, (see page 12) fault conditions, and setpoint adjustment. Should the touch-screen become inoperable, the unit and compressor controllers will continue uninterrupted operation of the chiller.

The unit controller minds those functions that are common to the chiller as a whole (pumps, cooling tower, valves, etc.) and is the interface point for BAS connection and other control inputs to the chiller, as well as outputs such as operation of the electronic expansion valve.

Each of the two compressor controllers is dedicated to a compressor and controls its operation, as well as feeding data to the pLAN for use by other system components.

Figure 1, Major Control Components

![Diagram of control components]
The control system of the WMC chillers consists of two major components, the unit control panel, as shown to the right, and the operator interface panel as shown on the extreme left of the unit featured on the cover. Note that the touch screen panel is on an adjustable arm so that it can be positioned comfortably for the operator. The control panel contains a USB port for downloading the unit’s fault history, major parameter trends, and the unit operating manual that is stored in the microprocessor. These are but a few of the thoughtful touches built into this control system to optimize ease of operation, reliability, and efficient operation.

The picture to the right shows the unit’s control panel, with the two compressor controllers below and the unit controller mounted above them. The unit controller is responsible for functions involving the entire unit (controlling the electronic expansion valve, for instance) and is the interface point for devices and signals external to the unit. The compressor controllers’ job is to operate and control the compressors. If the Interface Touch-Screen is out of service, the chiller can continue to operate under control of the unit and compressor controllers. This feature increases the reliability of the control system.

A terminal strip is provided for connection of external input signals such as load limit and reset commands and output signals such as alarms and cooling tower commands.
MicroTech II Features and Benefits

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>BENEFIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy integration into Building Management System via McQuay’s exclusive Protocol Selectability™.</td>
<td>Designer is open to select any BAS supplier using industry standard protocols and know the MicroTech II control will interface with it.</td>
</tr>
<tr>
<td>Easy to read, adjustable, 12 inch, Super VGA Color Touchscreen operator interface</td>
<td>Operators can observe chiller operation at a glance and easily select various data screens and change set points</td>
</tr>
<tr>
<td>Historic trend data-downloadable</td>
<td>Water temperatures, refrigerant pressures, and motor load plots can provide valuable information for energy conservation</td>
</tr>
<tr>
<td>Precise ± 0.2 °F chilled water control</td>
<td>Provides stability in chilled water system</td>
</tr>
<tr>
<td>Proactive pre-shutdown correction of “unusual conditions” allows chiller to stay online</td>
<td>Activates alarm and modifies chiller operation to provide maximum possible cooling</td>
</tr>
<tr>
<td>Automatic control of chilled water and condenser water pumps</td>
<td>Integrated lead/lag and automatic engagement of backup pump</td>
</tr>
<tr>
<td>Controls up to four stages of tower fans and modulation of tower fan and/or bypass valve</td>
<td>Optimum integrated, efficient, control of cooling tower water based on system conditions</td>
</tr>
<tr>
<td>Twenty-five previous alarm descriptions are stored in memory</td>
<td>Invaluable asset in trouble shooting</td>
</tr>
<tr>
<td>Operating and maintenance manuals plus unit parts lists stored in memory</td>
<td>Information instantly available (downloadable) for the life of the unit.</td>
</tr>
<tr>
<td>Multiple language capability metric, in-lb</td>
<td>Great asset for world-wide applications</td>
</tr>
</tbody>
</table>

Designed with the System Operator in Mind

Reliable, economic use of any chiller depends largely on an easy operator interface. That’s why operation simplicity was one of the main considerations in the development of MicroTech II controller. The operator’s interface with the chiller is through a 12 inch, Super VGA color monitor with touch-screen capability. The operator can clearly see the entire chiller graphically displayed with the key operating parameters viewable on the screen. Pressing a single on-screen button will access the set screens where setpoints can be reviewed and changed, if necessary. Other screens, such as alarm history, are easily accessed through touch screen buttons. See the following page for some typical screens.

By constantly monitoring chiller status, the MicroTech II controller will automatically take proactive measures to relieve abnormal conditions or shut the unit down if a fault occurs. For example, if a problem occurs in the cooling tower and discharge pressure starts to rise, the controller will automatically hold the load point and activate an alarm signal. A further rise in pressure will initiate compressor unloading in an effort to maintain the setpoint pressure and stay online. If the pressure continues to rise, the unit will shut off at the cutout pressure setting.
The MicroTech II controller’s memory retains a record of faults and the time/date stamp. The controller's memory (no batteries required) can retain and display the cause of the current fault and the last twenty-five fault conditions. This method for retaining the fault is extremely useful for trouble shooting and maintaining an accurate record of unit performance and history.

The MicroTech II controller features a two-level password security system to provide protection against unauthorized use.

Figure 3, MicroTech II Controller Home Screen

The Home Screen shown above is usually used as the primary viewing screen. It gives real time data on unit status, water temperatures, chilled water set point and motor amp draw. In other words, it very clearly answers the vital question; is the chiller doing what it is supposed to do?

If an alarm occurs, a red button appears on the screen (a remote signal is also available). Pressing this button immediately accesses the Active Fault Screen that gives complete fault information. The problem can be fixed and the fault can be quickly and easily cleared at this point.

Changing Set Points

The mystery of changing set points is a thing of the past. Look at how easy the job becomes with the McQuay MicroTech II. For example, to change the chilled water set point, press SET from any screen, then press the WATER button (natural choice) and this screen appears, press button #1, Leaving Water Temperature, and you are ready to input a new value.
Trend Logging

Ever wonder how your chiller performed last week? Were you holding the required chilled water temperature? What kind of cooling load did the chiller have?

The McQuay MicroTech II controller can reach back in the past, thanks to its memory, and plot water temperatures, refrigerant pressures, and motor load. These values can also be downloaded through a convenient USB port in the control panel, and pasted into a spreadsheet for further evaluation.

MicroTech II Controller Increases Chiller Operating Economy

Many standard features have been incorporated into MicroTech II control in order to maintain the operating economy of McQuay centrifugal chillers. In addition to replacing normal relay logic circuits, we’ve enhanced the controller's energy saving capabilities with the following features:

- **Direct control of water pumps.** Optically isolated, digital output relays provide automatic lead-lag of the evaporator and condenser pumps, permitting pump operation only when required.
- **User-programmable compressor soft loading.** Prevents excessive power draw during pull down from high chilled water temperature conditions.
- **Chilled-water reset.** Accomplished directly on the unit by resetting the leaving water temperature based on the return water temperature. A remote 4-20ma or 1-5 VDC BAS signal can also be used to reset the leaving water. Raising the chilled water set point during periods of light loads dramatically reduces electrical consumption.
- **Demand limit control.** Maximum motor current draw can be set on the panel, or can be adjusted from a remote 4-20ma or 1-5 VDC BAS signal. This feature controls maximum demand charges during high usage periods.
- **Condenser water temperature control.** Capable of four stages of tower fan control plus an optional analog control of either a three-way tower-bypass valve or variable speed tower-fan motor. Stages are controlled from condenser-water temperature. The three-way valve can be controlled to a different water temperature or track the current tower stage. This allows optimum chilled water plant performance based upon specific job requirements.
- **Staging Options (Multiple Chiller Installations).** Lead-lag and load-balance: the MicroTech II controller is capable of compressor lead-lag decisions and balancing compressor loads between two compressors on one unit or up to three McQuay chillers using defaults or operator defined staging. For example, in the 30 to 60 percent load segment, one compressor running on each of two chillers will provide better efficiency than two compressors running on one chiller.
- **Plotting Historic Trends.** Past operation of the chiller can be plotted as trend lines and even downloaded to spread sheets for evaluation - a valuable tool for optimizing efficiency.
Communication Capabilities

Versatile Communications Capabilities Give You Even More Control
For complete flexibility there are three ways to interface with the MicroTech II controller:

1. Direct entry and readout locally at the operator interface panel on the unit.
2. Direct entry as above plus digital and analog input/output signals for certain functions such as: enable run input, alarm signal output, 4-20ma or 0-5 VDC inputs for chilled water reset and load limiting, pump and tower fan control, analog output for variable speed fan and tower bypass.

Building Automation Systems
All MicroTech II controllers are capable of communications providing seamless integration and comprehensive monitoring, control, and two-way data exchange with industry standard protocols LONTALK™ or BACnet™ or Modbus™.

Protocol Selectability™ Benefits
- Easy to Integrate Into Your Building Automation System of Choice
- Factory-Installed Module
- Provides Efficient Equipment Operation
- Integrated Control Logic for Factory Options
- Easy-to-Use Local User Interface
- Owner/Designer Can Select the BAS that Best Meets Building Requirements
- Comprehensive Data Exchange

Figure 4, Sample System Architecture (BACnet™ Shown)
Table 1, Typical Data Point Availability

<table>
<thead>
<tr>
<th>Typical Data Points¹ (W = Write, R = Read)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Limit Output R Cond EWT R Evap Water Pump Status R</td>
<td></td>
</tr>
<tr>
<td>Capacity Limit Setpoint W Cond Flow Switch Status R Pump Select W</td>
<td></td>
</tr>
<tr>
<td>Chiller Enable W Cond LWT R Run Enabled R</td>
<td></td>
</tr>
<tr>
<td>Chiller Limited R Cond Pump Run Hours R Liquid Line Refrigerant Pressure R</td>
<td></td>
</tr>
<tr>
<td>Chiller Local/Remote R Cond Refrigerant Pressure R Liquid Line Refrigerant Temp R</td>
<td></td>
</tr>
<tr>
<td>Chiller Mode Output R Cond Sat. Refrigerant Temp R Maximum Send Time W</td>
<td></td>
</tr>
<tr>
<td>Chiller Mode Setpoint W Cond Water Pump Status R Minimum Send Time R</td>
<td></td>
</tr>
<tr>
<td>Chiller On/Off R Evap EWT R Network Clear Alarm W</td>
<td></td>
</tr>
<tr>
<td>Chiller Status R Evap Flow Switch Status R Cool Setpoint W</td>
<td></td>
</tr>
<tr>
<td>Compressor Discharge Temp R Evap LWT for Unit R Current Alarm R</td>
<td></td>
</tr>
<tr>
<td>Compressor Percent RLA R Evap LWT for Compressor R Default Values W</td>
<td></td>
</tr>
<tr>
<td>Compressor Run Hours R Evap Pump Run Hours R Active Setpoint R</td>
<td></td>
</tr>
<tr>
<td>Compressor Select W Evap Refrigerant Pressure R Actual Capacity R</td>
<td></td>
</tr>
<tr>
<td>Compressor Starts R Evap Sat. Refrigerant Temp R Compressor Suction Line Temp R</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Data points available are dependent upon options selected

Integration Made Easy
McQuay unit controllers strictly conform to the interoperability guidelines of the LONMARK® Interoperability Association and the BACnet Manufacturers Association. They have received:

Protocol Options
- BACnet MS/TP
- BACnet IP
- BACnet Ethernet
- LONWORKS® (FTT-10A)
- Modbus RTU

The BAS communication module can be ordered with a chiller and factory-mounted or can be field-mounted at any time after the chiller unit is installed.
Unit Design Features

Variable Frequency Drive

Efficiency: The variable frequency drive option is a technology that has been used for decades to control motor speed on a wide variety of motor-drive applications. When applied to centrifugal compressor motors, significant gains in compressor part load performance can be realized. The improvement in efficiency and reduction of annual energy cost is maximized when there are long periods of part load operation, combined with low compressor lift (lower condenser water temperatures).

Combining the attributes of VFD drives and the efficient McQuay WMC Dual Centrifugal Chiller produces one of the industry's most efficient chillers based on the all-important IPLV value. See “IPLV/NPLV Defined” on page 20 for details on the ARI IPLV efficiency rating.

Starting Inrush: The use of a VFD on centrifugal chillers also provides an excellent method of reducing motor starting inrush— even better than "solid state" starters. Starting current can be closely controlled since both the frequency and voltage are regulated. This can be an important benefit to a building's electrical distribution system. The low inrush feature, combined with two one-half size compressors having a staggered start, is particularly attractive where chillers will be asked to operate on emergency generators. Since inrush has much to do with sizing the generators, much smaller generators can be used. See page 37 for further details.

HFC-134a:

Helping To Keep The Ozone Whole!

McQuay Positive Pressure Design:

<table>
<thead>
<tr>
<th>No Purge</th>
<th>No Vacuum Prevention System</th>
<th>No Contaminants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HFC-134a operates above atmospheric pressure in the entire refrigerant circuit and at normal temperatures.

All McQuay centrifugal chillers use a positive pressure refrigerant. There is...

- No absorption of impurities into the refrigerant circuit
- No breakdown of motor insulation, refrigerant or lubricant
- No increase in operating cost due to displacement of heat transfer surface by non-condensables
- No crevice corrosion and tube failure due to moisture in the system
- No annual service expense to maintain and rebuild purge unit
- No abnormal annual service expense for oil, filter, and refrigerant replacement
- No periodic emissions of refrigerant into the atmosphere

Heat Exchangers

McQuay WMC centrifugal chillers are equipped with high performance heat exchangers. The unique design greatly increases heat transfer and reduces unit footprint and refrigerant charge. Vessels are designed, constructed and tested in accordance with ASME Section VIII, ASHRAE Standard 15 requirements and TEMA recommendations.

The replaceable water tubes are internally rifled and externally enhanced copper and are mechanically bonded to steel tube sheets. Standard tubes are 0.025-inch wall thickness. Optional tubes include 0.028-inch and 0.035-inch wall thickness on either vessels and 90/10 cupro-nickel, 304 stainless steel or titanium material. Clad tube sheets and epoxy-coated heads can be provided.

Vessels are available for 1, 2 or 3 pass water flow. A 3/4" or 1 1/2 thick layer of vinyl/nitrate polymer evaporator insulation is optional. All seams are glued to form an effective vapor barrier. Detailed information on the insulation can be found under “Physical Data” in this catalog.
Pumpdown

Pumpout systems provide a means to collect and contain the refrigerant charge without loss, when access to internal chiller components is required for service.

McQuay condensers and evaporators are sized to hold the entire unit refrigerant charge when not more than 90% full and at 90°F (32°C) ambient temperature. They are equipped with valves at the compressor discharge, in the liquid line and in the suction line. These valves, coupled with the vessel design, satisfy the stringent requirements of the U.S. Department of Transportation for refrigerant shipping containers, as well as ASME vessel codes. When service is required, the refrigerant charge can be pumped down into either the condenser or evaporator by compressor operation and use of a refrigerant transfer unit.

Elimination of the cost and space requirements of an external pumpout system on most jobs is a major McQuay advantage.

Electronic Expansion Valve

Controlled refrigerant flow over the entire capacity range saves energy and dollars. Cooling loads and condenser water temperatures can change constantly. On WMC chillers, a modern electronic expansion valve meters refrigerant flow in direct response to the unit controller input, which looks at unit kW and lift (discharge minus suction pressure) to set the valve position. The controller then balances suction superheat and liquid subcooling to reach the optimum efficiency, regardless of changing load or condensing temperatures. In doing so, full utilization of compressor, evaporator, and condenser efficiency over the entire operating range is achieved.

Flow Switch

Chiller units must be provided with flow switches for the evaporator and condenser. McQuay furnishes factory-installed and wired, thermal-type flow switches as standard equipment on WMC chillers. This eliminates the expense of field mounting and wiring conventional paddle or differential pressure switches.

The flow switches prevent the unit from starting without sufficient water flow through the vessels. They also serve to shut down the unit in the event that water flow is interrupted to guard against evaporator freeze-up or excessive discharge pressure.

Additionally, for a higher margin of protection, normally open auxiliary contacts in the pump starters can be wired in series with the flow switches as shown in the Field Wiring Diagram.

Factory Performance Test

Fast and trouble free startup and operation.

All McQuay centrifugal chillers are factory-tested on ARI certified microprocessor-controlled test stands. The test stand microprocessors interface with the chiller MicroTech II controls, allowing monitoring of all aspects of the test stand and chiller operation.

The test procedure starts with dehydration and evacuation of the refrigerant circuit and charging with refrigerant. This is followed by a run test at job conditions of flow and temperature. Compressors must meet a stringent vibration limit and the entire unit must pass a moisture limit of 30 ppm.

The testing helps ensure correct operation prior to shipment, and allows factory calibration of chiller operating controls.
Optional Certified Test
A McQuay engineer oversees the testing, certifies the accuracy of the computerized results, and translates the test data onto an easy-to-read spreadsheet. The tests can be run at ARI load points between 10% and 100% and are run to ARI tolerance of capacity and power. Fifty-Hz units are run tested to their maximum motor power due to running at 6/5 of the 50 Hz speed with 60 Hz test stand power.

Optional Witness Test
A McQuay engineer oversees the testing in the presence of the customer or their designate and translates the test data onto an easy-to-read spreadsheet. The unit is pre-run before the customer arrival to be sure that operation is up to standard. The tests can be run at ARI load points between 10% and 100%. It takes two to three hours of test time per load point specified. Tests are run to ARI tolerances of capacity and power. Fifty-Hz units are run tested to their maximum motor power due to running at 6/5 of the 50 Hz speed with 60 Hz test stand power.

McQuay Factory Service Startup
All McQuay centrifugal chillers are commissioned by McQuay Factory Service personnel, or by authorized McQuay startup technicians. This procedure helps assure that proper starting and checkout procedures are employed and helps in a speedy commissioning process.

Part Load Efficiency
Chillers usually spend 99% of their operating hours under part load conditions, and most of this time at less than 60% of design capacity. One compressor of a dual chiller operates with the full heat transfer surface of the entire unit. For example, one 75 ton compressor on a 150 ton dual chiller utilizes 150 tons of evaporator and condenser surface. This results in very high unit efficiency and also increases the compressor’s capacity.

The inclusion of VFDs, as standard, to the dual compressor chiller can produce astonishing ARI Certified IPLVs, in the range of 0.375 kW/ton. Specific selections can vary up or down from this example.

Compliance with ASHRAE 90.1
With the WMC capacity range of 110 to 175 tons, it falls into two ASHRAE 90.1 efficiency requirements – below 150 tons and 150 tons & larger. Below 150 tons, the standard requires a full load and IPLV of 0.703 kW/ton (5.0 C.O.P.). The WMC chiller will easily meet these requirements.

For 150 tons and larger, some care may be required in the system design to meet the full load requirement. The standard requires 0.633 kW/ton (5.55 C.O.P.) for both full load and the IPLV. The WMC’s excellent part load performance easily meets the part load requirements with IPLVs as low as 0.365 kW/ton (approximately 40% lower than required). The unit full load efficiency at the ARI standard rating point could slightly exceed the standard.

To resolve this dilemma, the ASHRAE 90.1 Standard provides full load performance requirements for reduced condenser water flow. This allows the WMC to meet the requirements. As the condenser water flow drops below 3.0 GPM/ton, the WMC can meet the standard’s requirements. See the example below. It is wise to concentrate on the outstanding part load performance provided by WMC, rather than only full load, because nearly all of the operating hours for a typical comfort cooling application are at part load conditions.
Example
Project requirements are 160 tons at the standard ARI temperatures of 44 degrees leaving evaporator water temperature and 85 degrees entering condenser water temperature.

ASHRAE Standard 90.1 requirements for full load and IPLV efficiencies are 0.633 kW/ton (5.55 C.O.P.).

At 3.0 GPM/ton for the condenser, the WMC performance is 0.640 kW/ton at full load and 0.367 kW/ton IPLV. Although the part load is vastly lower than the requirements, the full load is a little higher (one percent).

To meet ASHRAE 90.1 requirements, consider lowering the condenser water flow to 2.5 GPM/ton. With all other conditions unchanged, the WMC full load performance becomes 0.653 kW/ton. Because ASHRAE 90.1 requires 0.660 kW/ton at these conditions, the WMC now meets the requirements.

ARI Certification
McQuay International has an on-going commitment to supply chillers that perform as specified. To this extent, McQuay centrifugal chillers are part of the ARI Certification Program. On-going performance verification of chiller capacity and power input plus ARI certified computerized selection output provide the owner with specified performance in accordance with the latest version of ARI Standard 550/590.

All chillers that fall within the scope of the certification program have an ARI certification label at no cost to the owner. Equipment covered by the ARI certification program include all water-cooled centrifugal and screw water chilling packages rated up to 2000 tons (7,000 kW) for 60 hertz service at ARI standard rating conditions, hermetic or open drive, with electric driven motor not exceeding 5000 volts, and cooling water (not glycol). For 50 hertz application the capacity range covered is 200 to 1,000 tons (700 to 3500 kW).

Published certified ratings verified through testing by ARI include:

- Capacity, tons (kW)
- Power, kW/ton (COP)
- Pressure drops, ft. of water (kPa)
- Integrated Part Load Value (IPLV) or Non-Standard Part Load Value (NPLV)

The ARI Standard 550/590-98 for Centrifugal or Screw Water-Chilling Packages and associated manuals define certification and testing procedures and performance tolerances of all units that fall within the application rating conditions.

- Leaving chilled water temperature 40°F to 48°F (44°F standard)
- Entering condenser water temperature 60°F to 95°F
- Leaving chilled water temperature 44°F
- Evaporator waterside field fouling allowance 0.0001
- Chilled water flow rate 2.4 gpm/ton
- Entering condenser water temperature 85°F
- Condenser waterside field fouling allowance 0.00025
- Condenser water flow rate 3.0 gpm/ton
IPLV/NPLV Defined

Part load performance can be presented in terms of Integrated Part Load Value (IPLV), which is based on ARI standard rating conditions (listed above), or Non-Standard Part Load Values (NPLV), which is based on specified or job site conditions. IPLV and NPLV are based on the following weighting equation from ARI 550/590.

\[
\text{IPLV} = \frac{1}{A + 0.42B + 0.45C + 0.12D} \\
\text{NPLV} = \frac{1}{A + B + C + D}
\]

Where:
- \(A = \text{kW/ton at 100\%}\)
- \(B = \text{kW/ton at 75\%}\)
- \(C = \text{kW/ton at 50\%}\)
- \(D = \text{kW/ton at 25\%}\)

Weighting

The percent of annual hours of operation at the four load points are as follows:

- 100\% Load at 1\%,
- 75\% Load at 42\%,
- 50\% Load at 45\%,
- 25\% Load at 12\%

Note that the vast majority of hours are at the operating range where dual compressor chiller excel.

Tolerances

The ARI test tolerance, per ARI Standard 550/590-98, for capacity (tons), power input per ton (kW/ton), and heat balance is:

\[
\% \text{Tolerance} = 10.5 - (0.07 \times FL) + \left(\frac{1500}{\text{DTFL} \times FL} \right)
\]

Where:
- FL = Full Load
- DTFL = Chilled Water Delta-T at Full Load

This formula results in a ±5\% tolerance on tons and kW/ton at the 100\% load point and ARI conditions.
Chiller Identification

McQuay WMC centrifugal chillers are selected by computer and identified by their components on the selection printout as a Model #.

The unit model code is as follows:

Figure 5, Chiller Identification

MODEL CODE EXAMPLE:

```
```

COMPRESSOR

- Packaged Water Cooled
- M = Magnetic
- Centrifugal Compressor Model
- Compressor/Impeller Code
- Dual Compressors
- Motor/Voltage Code

EVAPORATOR

- Evaporator Shell Description [Diameter (in.), Length (ft.)]
- Tube Count Code
- Tube Type Code
- Number of Passes (1, 2, 3)
- Water Inlet Location (R = Right Inlet; L = Left Inlet)
- Connection Type

CONDENSER

- Condenser Shell Description [Diameter (in.), Length (ft.)]
- Tube Count Code
- Tube Type Code
- Tube Count Code (Heat Recovery Condenser)
- Tube Type Code (Heat Recovery Condenser)
- Number of Passes (1, 2, 3)
- Water Inlet Location (R = Right Inlet; L = Left Inlet)
- Connection Type
- Number of Passes (Heat Recovery Condenser)
- Water Inlet Location (Heat Recovery Condenser)
- Connection Type (Heat Recovery Condenser)
- Motor Manufacturer

R

- Refrigeration Type (134 = HFC-134a)
Physical Data and Weights

Evaporator
Refrigerant-side design pressure is 200 psi (1380 kPa). Water-side is 150 psi (1034 kPa).
Approximate total square footage of insulation surface required for individual packaged chillers is tabulated by evaporator code and can be found below. The suction elbow and compressor also require insulation.

Table 2, Evaporator Physical Data

<table>
<thead>
<tr>
<th>Evaporator Code</th>
<th>Tube Length</th>
<th>Maximum Refrigerant Charge lb. (kg)</th>
<th>Evaporator Water Capacity, gal (L)</th>
<th>Insulation Area sq. ft. (m²)</th>
<th>Vessel Weight lb. (kg)</th>
<th>Number of Relief Valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2209</td>
<td>9 ft.</td>
<td>590 (268)</td>
<td>38 (145)</td>
<td>66 (6.1)</td>
<td>2387 (1083)</td>
<td>1</td>
</tr>
<tr>
<td>E2212</td>
<td>12 ft.</td>
<td>790 (358)</td>
<td>45 (170)</td>
<td>90 (8.3)</td>
<td>2877 (1305)</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:
1. Refrigerant charge is for the entire unit and is approximate since the actual charge will depend on other variables. Actual charge will be shown on the unit nameplate.
2. Water capacity is based on standard tube configuration and standard dished heads.

Condenser
With positive pressure systems, the pressure variance with temperature is always predictable, and the vessel design and pressure relief protection are based upon pure refrigerant characteristics. R-134a requires ASME vessel design, inspection and testing and uses spring-loaded pressure relief valves. When an over-pressure condition occurs, spring-loaded relief valves purge only that quantity of refrigerant required to reduce system pressure to the valve’s set pressure, and then close.
Refrigerant-side design pressure is 200 psi (1380 kPa). Water-side design is 150 psi (1034 kPa).

Table 3, Condenser Physical Data

<table>
<thead>
<tr>
<th>Condenser Code</th>
<th>Tube Length</th>
<th>Maximum Pumpdown Capacity lb. (kg)</th>
<th>Water Capacity gal. (L)</th>
<th>Vessel Weight lb. (kg)</th>
<th>Number of Relief Valves</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2009</td>
<td>9 ft.</td>
<td>728 (330)</td>
<td>47 (147)</td>
<td>2130 (965)</td>
<td>2</td>
</tr>
<tr>
<td>C2012</td>
<td>12 ft.</td>
<td>971 (440)</td>
<td>62 (236)</td>
<td>2528 (1147)</td>
<td>2</td>
</tr>
</tbody>
</table>

Notes:
1. Condenser pumpdown capacity based on 90% full at 90°F.
2. Water capacity based on standard configuration and standard heads and can be less with lower tube counts.
3. See Relief Valves section for additional information.
Relief Valves

Vessel Relief Valves
Relief valve connection sizes are 1 inch FPT and are in the quantity shown in Table 2 and Table 3. Relief valves must be piped to the outside of the building in accordance with ANSI/ASHRAE 15-2001. The new 2001 standard has revised the calculation method compared to previous issues.

Twin relief valves, mounted on a transfer valve, are used on the condenser so that one relief valve can be shut off and removed for testing or replacement, leaving the other in operation. Only one of the two valves is in operation at any time.

Vent piping is sized for only one valve of the set since only one can be in operation at a time.

Relief Pipe Sizing (ASHRAE Method)

Relief valve pipe sizing is based on the discharge capacity for the given evaporator or condenser and the length of piping to be run.

Since the pressures and valve size are fixed for McQuay chillers, the sizing equation can be reduced to the simple table shown below.

The discharge from more than one relief valve can be run into a common header, the area of which shall not be less than the sum of the areas of the connected pipes. For further details, refer to ASHRAE Standard 15. The common header can be calculated by the formula:

\[
D_{Common} = \left(D_1^2 + D_2^2 + \ldots + D_n^2 \right)^{0.5}
\]

Table 4. Relief Valve Piping Sizes

<table>
<thead>
<tr>
<th>Pipe Size inch (NPT)</th>
<th>1 1/4</th>
<th>1 1/2</th>
<th>2</th>
<th>2 1/2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moody Factor</td>
<td>0.0209</td>
<td>0.0202</td>
<td>0.0190</td>
<td>0.0182</td>
<td>0.0173</td>
</tr>
<tr>
<td>Equivalent length (ft)</td>
<td>2.2</td>
<td>18.5</td>
<td>105.8</td>
<td>296.7</td>
<td>973.6</td>
</tr>
</tbody>
</table>

NOTE: A 1-inch pipe is too small to handle these valves. A pipe increaser must be installed at the valve outlet.
Pressure Drop Curves

Figure 7, Evaporator Pressure Drops

![Evaporator Pressure Drop Graph]

Figure 8, Condenser Pressure Drops

![Condenser Pressure Drop Graph]
Sound Data

The following sound pressure ratings are for measurements one meter from the unit and in accordance with ARI Standard 575. The ratings are for the various tonnages shown and at the center bands. Note that there is a considerable lowering of sound level as the units unload. Octave band values are flat dB, A weighted values are dBA.

Table 5, Sound Pressure (dB), 120 Tons, 60 Hz

<table>
<thead>
<tr>
<th>Percent Load</th>
<th>Octave Band, Hz</th>
<th>A-Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63 125 250 500 1000 2000 4000 8000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>32.9 50.5 57.6 65.1 69.2 72.6 71.0 67.0</td>
<td>76.5</td>
</tr>
<tr>
<td>75</td>
<td>30.2 47.8 53.1 60.4 68.9 69.5 67.2 62.0</td>
<td>73.1</td>
</tr>
<tr>
<td>50</td>
<td>30.5 46.0 52.2 60.7 64.7 66.3 62.7 55.8</td>
<td>69.5</td>
</tr>
<tr>
<td>25</td>
<td>34.4 47.3 55.3 59.6 63.2 64.5 60.0 53.5</td>
<td>68.3</td>
</tr>
</tbody>
</table>

Table 6, Sound Pressure (dB), 130 Tons, 60 Hz

<table>
<thead>
<tr>
<th>Percent Load</th>
<th>Octave Band, Hz</th>
<th>A-Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63 125 250 500 1000 2000 4000 8000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>33.1 50.8 58.0 65.6 69.6 73.1 71.5 67.4</td>
<td>77.0</td>
</tr>
<tr>
<td>75</td>
<td>30.4 48.1 53.5 60.8 69.3 70.0 67.6 62.5</td>
<td>73.6</td>
</tr>
<tr>
<td>50</td>
<td>30.7 46.4 52.5 61.1 65.2 66.8 63.2 56.2</td>
<td>70.0</td>
</tr>
<tr>
<td>25</td>
<td>34.6 47.7 55.7 60.0 63.7 65.0 60.4 53.9</td>
<td>68.7</td>
</tr>
</tbody>
</table>

Table 7, Sound Pressure (dB), 140 Tons, 60 Hz

<table>
<thead>
<tr>
<th>Percent Load</th>
<th>Octave Band, Hz</th>
<th>A-Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63 125 250 500 1000 2000 4000 8000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>33.4 51.2 58.3 66.0 70.1 73.6 72.0 67.9</td>
<td>77.5</td>
</tr>
<tr>
<td>75</td>
<td>30.6 48.5 53.9 61.2 69.8 70.5 68.1 62.9</td>
<td>74.1</td>
</tr>
<tr>
<td>50</td>
<td>30.9 46.7 52.9 61.5 65.6 67.2 63.6 56.6</td>
<td>70.5</td>
</tr>
<tr>
<td>25</td>
<td>34.9 48.0 56.1 60.4 64.1 65.4 60.8 54.3</td>
<td>69.2</td>
</tr>
</tbody>
</table>

Table 8, Sound Pressure (dB), 150 Tons, 60 Hz

<table>
<thead>
<tr>
<th>Percent Load</th>
<th>Octave Band, Hz</th>
<th>A-Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63 125 250 500 1000 2000 4000 8000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>33.6 51.5 58.8 66.4 70.6 74.1 72.5 68.4</td>
<td>78.0</td>
</tr>
<tr>
<td>75</td>
<td>30.9 48.8 54.2 61.6 70.3 71.0 68.6 63.3</td>
<td>74.6</td>
</tr>
<tr>
<td>50</td>
<td>31.2 47.0 53.2 61.9 66.0 67.7 64.0 57.0</td>
<td>71.0</td>
</tr>
<tr>
<td>25</td>
<td>35.1 48.3 56.5 60.8 64.5 65.8 61.2 54.7</td>
<td>69.7</td>
</tr>
</tbody>
</table>

Table 9, Sound Pressure (dB), 160 Tons, 60 Hz

<table>
<thead>
<tr>
<th>Percent Load</th>
<th>Octave Band, Hz</th>
<th>A-Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63 125 250 500 1000 2000 4000 8000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>33.8 51.9 59.2 66.9 71.1 74.6 73.0 68.8</td>
<td>78.6</td>
</tr>
<tr>
<td>75</td>
<td>31.1 49.1 54.6 62.0 70.8 71.5 69.0 63.8</td>
<td>75.1</td>
</tr>
<tr>
<td>50</td>
<td>31.4 47.3 53.6 62.3 66.5 68.1 64.5 57.4</td>
<td>71.5</td>
</tr>
<tr>
<td>25</td>
<td>35.3 48.6 56.9 61.2 65.0 66.3 61.6 55.0</td>
<td>70.1</td>
</tr>
</tbody>
</table>

Table 10, Sound Pressure (dB), 170 Tons, 60 Hz

<table>
<thead>
<tr>
<th>Percent Load</th>
<th>Octave Band, Hz</th>
<th>A-Weighted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>63 125 250 500 1000 2000 4000 8000</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>34.1 52.3 59.6 67.4 71.6 75.2 73.5 69.3</td>
<td>79.1</td>
</tr>
<tr>
<td>75</td>
<td>31.3 49.5 55.0 62.5 71.3 72.0 69.5 64.2</td>
<td>75.7</td>
</tr>
<tr>
<td>50</td>
<td>31.6 47.7 54.0 62.8 67.0 68.6 64.9 57.8</td>
<td>72.0</td>
</tr>
<tr>
<td>25</td>
<td>35.6 49.0 57.3 61.7 65.4 66.8 62.1 55.4</td>
<td>70.7</td>
</tr>
</tbody>
</table>
Figure 9, Dimensions WMC 2 Pass Evaporator, 2 Pass Condenser

<table>
<thead>
<tr>
<th>WMC Unit</th>
<th>Dimensions</th>
<th>Inches (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Foot Shells</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>8.8 (223.5)</td>
<td>134.7 (3421.4)</td>
</tr>
<tr>
<td>12 Foot Shells</td>
<td>43.7 (1109.9)</td>
<td>169.6 (4307.8)</td>
</tr>
</tbody>
</table>

NOTES:
1. The dimension drawing above is for standard production units. Certain early production units will have a different control panel arrangement and a greater height dimension.
2. Left-hand connections shown. Right-hand connections are available for either vessel.
3. For right-hand evaporator, the inlet and outlet are reversed. That is, the inlet is on the right end and looking at the head, the connection is on the left side.
4. See Physical Data and Weights section for component and unit weights.
5. Allow three feet of service access on all four sides. Most codes require four feet clearance in front of control and electrical panels. Allow sufficient overhead clearance to remove compressor depending on site and rigging method-minimum of four feet.
6. Allow the length of the tubes, plus two feet on one end, for tube removal. The last two numbers in the vessel code is the tube length in feet. Appropriately placed doors can accommodate tube removal through them.
7. Obtain current certified drawings from the local McQuay office for final layout.
8. See page 29 optional marine water box dimensions.
Figure 10, Dimensions WMC 3 Pass Evaporator, 2 Pass Condenser

NOTES:
1. The dimension drawing above is for standard production units. Certain early production units will have a different control panel arrangement and a greater height dimension.
2. Left-hand connections shown above. Right-hand connections are available for either vessel.
3. For right-hand evaporator, the inlet and outlet are reversed. That is, the inlet is on the right end and looking at the head, the connection is on the left side.
4. See Physical Data and Weights section for component and unit weights.
5. Allow three feet of service access on all four sides. Most codes require four feet clearance in front of control and electrical panels. Allow sufficient overhead clearance to remove compressor depending on site and rigging method—minimum of four feet.
6. Allow the length of the tubes, plus two feet on one end, for tube removal. The last two numbers in the vessel code is the tube length in feet. Appropriately placed doors can accommodate tube removal through them.
7. Obtain current certified drawings from the local McQuay office for final layout.
8. See page 29 optional marine water box dimensions.
Figure 11, Mounting/Lifting Weights

Mounting Weight, lbs (kg)

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Corner 1</th>
<th>Corner 2</th>
<th>Corner 3</th>
<th>Corner 4</th>
<th>Total</th>
<th>“A”</th>
<th>“B”</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Ft Shells</td>
<td>1562 (709)</td>
<td>1516 (688)</td>
<td>1459 (662)</td>
<td>2350 (1067)</td>
<td>7887 (3581)</td>
<td>See Figure 9 & Figure 10</td>
<td>See Figure 9 & Figure 10</td>
</tr>
<tr>
<td>12 Ft Shells</td>
<td>2712 (1231)</td>
<td>2122 (963)</td>
<td>2161 (981)</td>
<td>1691 (768)</td>
<td>8686 (3943)</td>
<td>See Figure 9 & Figure 10</td>
<td>See Figure 9 & Figure 10</td>
</tr>
</tbody>
</table>

Shipping Weight, lbs (kg)

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Corner 1</th>
<th>Corner 2</th>
<th>Corner 3</th>
<th>Corner 4</th>
<th>Total</th>
<th>“A”</th>
<th>“B”</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Ft Shells</td>
<td>1396 (634)</td>
<td>2249 (1021)</td>
<td>1305 (592)</td>
<td>2102 (954)</td>
<td>7052 (3202)</td>
<td>4.0 (102)</td>
<td>112.0 (2845)</td>
</tr>
<tr>
<td>12 Ft Shells</td>
<td>2450 (1112)</td>
<td>1918 (871)</td>
<td>1965 (892)</td>
<td>1528 (694)</td>
<td>7851 (3564)</td>
<td>4.0 (102)</td>
<td>147.0 (3734)</td>
</tr>
</tbody>
</table>

NOTES:

1. The block shown above is the mounting footprint, not the entire unit footprint.
2. Lifting holes in the top of the tube sheets are 2.5-inch diameter. Mounting holes in the feet are 1.125-inch diameter.
Marine Water Boxes

Marine water boxes are an available option on all evaporator and condenser sizes. Epoxy coating of the water boxes and clad tube sheets are available for extreme duty applications. Caution: There is some nomenclature confusion in the industry. McQuay refers to our standard dished heads as “dished heads”. Some manufacturers refer to them, or similar devices as “water boxes”. They are not “marine water boxes” with removable end covers as illustrated below.

Dimensions with Victaulic or Flanged Connections

150 PSI Non-ASME - Victaulic Connection

<table>
<thead>
<tr>
<th>Evap Dia.</th>
<th>1 PASS</th>
<th>2 PASS</th>
<th>3 PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>E22</td>
<td>'AAA'</td>
<td>'BBB'</td>
<td>'CCC'</td>
</tr>
<tr>
<td></td>
<td>'DDD'</td>
<td>'EEE'</td>
<td>'FFF'</td>
</tr>
<tr>
<td></td>
<td>'GGG'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.75</td>
<td>17.00</td>
<td>21.25</td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>10.00</td>
<td>5.99</td>
</tr>
<tr>
<td></td>
<td>23.00</td>
<td>5.59</td>
<td>7.12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cond Dia.</th>
<th>1 PASS</th>
<th>2 PASS</th>
<th>3 PASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20</td>
<td>'AAA'</td>
<td>'BBB'</td>
<td>'CCC'</td>
</tr>
<tr>
<td></td>
<td>'DDD'</td>
<td>'EEE'</td>
<td>'FFF'</td>
</tr>
<tr>
<td></td>
<td>'GGG'</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.625</td>
<td>16.00</td>
<td>19.00</td>
</tr>
<tr>
<td></td>
<td>18.00</td>
<td>9.00</td>
<td>5.63</td>
</tr>
<tr>
<td></td>
<td>16.00</td>
<td>5.63</td>
<td>Consult McQuay Sales Office</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions in inches (mm).
2. Flanges are ANSI raised face. Mating flanges by others.
3. Some condensers with flanges can have staggered connections due to flange interference. Consult factory.
4. When built with flange connections instead of victaulic, the distance from the vertical centerline to the flange face is 0.5 inches more than shown with victaulic (dimension D).
Electrical Data

Electrical
Wiring, fuse and wire size must be in accordance with the National Electric Code (NEC).

Important: The voltage to these units must be within ±10% of nameplate voltage, and the voltage unbalance between phases must not exceed 2% per NEMA MG-1, 1998 Standard.

Power Wiring
The standard power wiring connection to WMC chillers is multi-point, i.e. a separate power supply to each of the two circuit’s terminal box. Single-point connection to one terminal box is available as an option, in which case the individual circuit breakers for each circuit are retained.

The terminal box (as shown to the right) contains the circuit breaker/disconnect (standard on multi-point connection, optional on single-point connection), a line reactor, and optional radio frequency (RF) filter.

Power wiring to compressors must be in proper phase sequence. Motor rotation is set up for clockwise rotation facing the lead end with phase sequence of 1-2-3. Care must be taken that the proper phase sequence is carried through the starter to compressor. With the phase sequence of 1-2-3 and L1 connected to T1 and T6, L2 connected to T2 and T4, and L3 connected to T3 and T5, rotation is proper.

Table 11, WMC Electrical Connections

<table>
<thead>
<tr>
<th>Power Connection</th>
<th>Standard Amp Rating</th>
<th>High Short Circuit Current Rating, HSCC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Power Block</td>
<td>Disconnect</td>
</tr>
<tr>
<td>Single-point</td>
<td>Standard Rated</td>
<td>Standard Rated Molded Case Disc. Switch</td>
</tr>
<tr>
<td>Terminal Box</td>
<td>Power Block</td>
<td>Standard Rated Circuit Breaker</td>
</tr>
<tr>
<td>Each Compressor</td>
<td>Standard Rated</td>
<td></td>
</tr>
<tr>
<td>Electric Box</td>
<td>Circuit Breaker</td>
<td></td>
</tr>
</tbody>
</table>

Multi-point

| | Not Available | (2) Standard Rated Circuit Breakers | Not Available | (2) HSCC Rated Circuit Breakers |

NOTES
1. Bold type combination is standard offering, all other combinations are options.
2. Circuit breakers have through-the-door disconnect switch handle.
3. When HSCC rating is included, the entire two compressor electric boxes, and single-point box if ordered, are HSCC rated. HSCCR at 460volts is 65 kA.
The RLA for use in the following tables is obtained by the selection of a specific unit by McQuay. When shipped, a unit will bear the specific RLA, stamped on the nameplate, for the selected operating conditions. The tables below are for 60 Hz, 460 volts and 50 Hz, 400 volts.

Table 12, Multi-Point Connection, Each Circuit – 1 Compressor per Circuit

<table>
<thead>
<tr>
<th>RLA (Per Compressor)</th>
<th>LRA</th>
<th>Hz</th>
<th>Minimum Circuit Ampacity (MCA)</th>
<th>Field Wire</th>
<th>Max Fuse Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 to 55 Amps</td>
<td>72</td>
<td>60</td>
<td>65 to 69</td>
<td>3 4 GA</td>
<td>110 Amps</td>
</tr>
<tr>
<td>56 to 65 Amps</td>
<td>72</td>
<td>60</td>
<td>70 to 82</td>
<td>3 4 GA</td>
<td>125 Amps</td>
</tr>
<tr>
<td>68 to 77 Amps</td>
<td>94</td>
<td>50,60</td>
<td>85 to 97</td>
<td>3 3 GA</td>
<td>150 Amps</td>
</tr>
<tr>
<td>78 to 85 Amps</td>
<td>94</td>
<td>50,60</td>
<td>98 to 107</td>
<td>3 2 GA</td>
<td>175 Amps</td>
</tr>
<tr>
<td>89 to 91 Amps</td>
<td>124</td>
<td>50,60</td>
<td>112 to 114</td>
<td>3 2 GA</td>
<td>200 Amps</td>
</tr>
<tr>
<td>92 to 103 Amps</td>
<td>124</td>
<td>50,60</td>
<td>115 to 129</td>
<td>3 1 GA</td>
<td>200 Amps</td>
</tr>
<tr>
<td>104 to 110 Amps</td>
<td>124</td>
<td>50,60</td>
<td>130 to 138</td>
<td>3 1/0</td>
<td>225 Amps</td>
</tr>
<tr>
<td>111 to 113 Amps</td>
<td>124</td>
<td>50,60</td>
<td>139 to 142</td>
<td>3 1/0</td>
<td>250 Amps</td>
</tr>
</tbody>
</table>

NOTE: Data for each of two circuits – 1 compressor per circuit

Table 13, Single Point Connection, Total Unit – 2 Compressors per Unit

<table>
<thead>
<tr>
<th>RLA (Per Compressor)</th>
<th>LRA</th>
<th>Hz</th>
<th>Minimum Circuit Ampacity (MCA)</th>
<th>Field Wire</th>
<th>Max Fuse Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 to 53 Amps</td>
<td>72</td>
<td>60</td>
<td>117 to 120</td>
<td>3 1 GA</td>
<td>150 Amps</td>
</tr>
<tr>
<td>54 to 57 Amps</td>
<td>72</td>
<td>60</td>
<td>122 to 129</td>
<td>3 1 GA</td>
<td>175 Amps</td>
</tr>
<tr>
<td>58 to 61 Amps</td>
<td>72</td>
<td>60</td>
<td>131 to 138</td>
<td>3 1/0</td>
<td>175 Amps</td>
</tr>
<tr>
<td>62 to 65 Amps</td>
<td>72</td>
<td>60</td>
<td>140 to 147</td>
<td>3 1/0</td>
<td>200 Amps</td>
</tr>
<tr>
<td>68 to 69 Amps</td>
<td>94</td>
<td>50,60</td>
<td>153 to 156</td>
<td>3 2/0</td>
<td>200 Amps</td>
</tr>
<tr>
<td>70 to 76 Amps</td>
<td>94</td>
<td>50,60</td>
<td>158 to 171</td>
<td>3 2/0</td>
<td>225 Amps</td>
</tr>
<tr>
<td>77 to 85 Amps</td>
<td>94</td>
<td>50,60</td>
<td>174 to 192</td>
<td>3 3/0</td>
<td>250 Amps</td>
</tr>
<tr>
<td>89 to 92 Amps</td>
<td>124</td>
<td>50,60</td>
<td>201 to 207</td>
<td>3 4/0</td>
<td>250 Amps</td>
</tr>
<tr>
<td>93 to 102 Amps</td>
<td>124</td>
<td>50,60</td>
<td>210 to 230</td>
<td>3 4/0</td>
<td>300 Amps</td>
</tr>
<tr>
<td>103 to 107 Amps</td>
<td>124</td>
<td>50,60</td>
<td>232 to 241</td>
<td>3 250</td>
<td>300 Amps</td>
</tr>
<tr>
<td>108 to 113 Amps</td>
<td>124</td>
<td>50,60</td>
<td>243 to 255</td>
<td>3 250</td>
<td>350 Amps</td>
</tr>
</tbody>
</table>

Table 14, Electrical Data, Single- and Multi-Point Connection

<table>
<thead>
<tr>
<th>RLA (Per Compressor)</th>
<th>Multi-Point Connection</th>
<th>Single Point Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disconnect Switch Only</td>
<td>Power Block</td>
</tr>
<tr>
<td>52 to 65 Amps</td>
<td>100 Amps</td>
<td>335 Amps</td>
</tr>
<tr>
<td>68 to 85 Amps</td>
<td>150 Amps</td>
<td></td>
</tr>
<tr>
<td>89 to 113 Amps</td>
<td>175 Amps</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Disconnect Switch will also be a Circuit Breaker.
2. Circuit Breaker in each circuit after Power Block or Molded Case Disconnect Switch.
3. Connections to terminals must be made with copper lugs and copper wire.

Power Factor

The full load power factor exceeds 0.90 for all capacity selections.

Control Wiring

The control circuit on the McQuay centrifugal packaged chiller is designed for 115-volts. Control power is supplied from a factory-wired transformer located in the terminal box.
1. Compressor terminal boxes are factory-mounted and wired. All line-side wiring must be in accordance with the NEC and be made with copper wire and copper lugs only. Power wiring between the terminal box and compressor terminals is factory installed.

2. Minimum wire size for 115 VAC is 12 ga. for a maximum length of 50 feet. If greater than 50 feet refer to McQuay for recommended wire size minimum. Wire size for 24 VAC is 18 ga. All wiring to be installed as NEC Class 1 wiring system. All 24 VAC wiring must be run in separate conduit from 115 VAC wiring. Wiring must be wired in accordance with NEC and connection to be made with copper wire and copper lugs only.

3. A customer furnished 24 or 120 Vac power for alarm relay coil may be connected between UTB1 terminals 84 power and 81 neutral of the control panel. For normally open contacts wire between 82 & 81. For normally closed wire between 83 & 81. The alarm is operator programmable. Maximum rating of the alarm relay coil is 25VA.

4. Remote on/off control of unit can be accomplished by installing a set of dry contacts between terminals 70 and 54.

5. If field supplied pressure differential switches are used, they must be installed across the vessel and not the pump. They must be suitable for 24vac and low current application.

6. Customer supplied 115 VAC 20 amp power for optional evaporator and condenser water pump control power and tower fans is supplied to unit control terminals (UTB1) 85 power / 86 neutral, PE equipment ground.

7. Optional customer supplied 115 VAC, 25 VA maximum coil rated, chilled water pump relay (ep1 & 2) may be wired as shown. This option will cycle the chilled water pump in response to chiller demand.

8. The condenser water pump must cycle with the unit. A customer supplied 115 VAC 25 VA maximum coil rated, condenser water pump relay (Cp1 & 2) to be wired as shown. Units with free-cooling must have condenser water above 60°F before starting.

9. Optional customer supplied 115 VAC 25 VA maximum coil rated cooling tower fan relays (C1 - C2 standard, C3-C4 optional) may be wired as shown. This option will cycle the cooling tower fans in order to maintain unit head pressure.

10. Auxiliary 24 VAC rated contacts in both the chilled water and condenser water pump starters should be wired as shown.

11. Voltage unbalance not to exceed 2% with a resultant current unbalance of 6 to 10 times the voltage unbalance per NEMA MG-1, 1998 Standard.

12. 4-20mA external signal for chilled water reset are wired to terminals 71 and 51 on the unit controller; load limit is wired to terminals 71 and 58 on the unit controller.
VFD Line Harmonics

Despite their many benefits, care must be taken when applying VFDs due to the effect of line harmonics on the building electric system. VFDs cause distortion of the AC line because they are nonlinear loads, that is, they don't draw sinusoidal current from the line. They draw their current from only the peaks of the AC line, thereby flattening the top of the voltage waveform. Some other nonlinear loads are electronic ballasts and uninterruptible power supplies.

Line harmonics and their associated distortion can be critical to ac-drives for three reasons:

1. Current harmonics can cause additional heating to transformers, conductors, and switchgear.
2. Voltage harmonics upset the smooth voltage sinusoidal waveform.
3. High-frequency components of voltage distortion can interfere with signals transmitted on the AC line for some control systems.

The harmonics of concern are the 5th, 7th, 11th, and 13th. Even harmonics, harmonics divisible by three, and high magnitude harmonics are usually not a problem.

Current Harmonics

An increase in reactive impedance in front of the VFD helps reduce the harmonic currents. Reactive impedance can be added in the following ways:

1. Mount the drive far from the source transformer.
2. Add line reactors. They are standard equipment on WMC chillers.
3. Use an isolation transformer.
4. Use a harmonic filter.

Voltage Harmonics

Voltage distortion is caused by the flow of harmonic currents through a source impedance. A reduction in source impedance to the point of common coupling (PCC) will result in a reduction in voltage harmonics. This can be done in the following ways:

1. Keep the PCC as far from the drives (close to the power source) as possible.
2. Increase the size (decrease the impedance) of the source transformer.
3. Increase the capacity (decrease the impedance) of the busway or cables from the source to the PCC.
4. Make sure that added reactance is "downstream" (closer to the VFD than the source) from the PCC.

Line Reactors

Five-percent line reactors are standard equipment on WMC chillers and located in each compressors power panel. They are employed to improve the power factor by reducing the effects of harmonics.

Harmonic Filter

The harmonic filter is an option for field mounting and wiring outside of the power panel. It works in conjunction with the line reactor to further minimize harmonic distortion. It is wired between the line reactor and compressor. IEEE 519-1991 Standard defines acceptable limits.

See the WMC certified drawings for harmonic filter dimensions and wiring information.

EMI (Electro Magnetic Interference) and RFI (Radio Frequency Interference) Filter

This filter is a factory-installed option. The terms EMI and RFI are often used interchangeably. EMI is actually any frequency of electrical noise, whereas RFI is a specific subset of electrical noise on the EMI spectrum. There are two types of EMI. Conducted EMI is unwanted high frequencies that ride on the AC wave form.
EMI - Radiated EMI is similar to an unwanted radio broadcast being emitted from the power lines. There are many pieces of equipment that can generate EMI, variable frequency drives included. In the case of variable frequency drives, the electrical noise produced is primarily contained in the switching edges of the pulse width modulation (PWM) controller.

As the technology of drives evolves, switching frequencies increase. These increases also increase the effective edge frequencies produced, thereby increasing the amount of electrical noise.

The power line noise emissions associated with variable frequency and variable speed drives can cause disturbances in nearby equipment. Typical disturbances include:

- Dimmer and ballast instability
- Lighting disturbances such as flashing
- Poor radio reception
- Poor television reception
- Instability of control systems
- Flow meter totalizing
- Flow metering fluctuation
- Computer system failures including the loss of data
- Thermostat control problems
- Radar disruption
- Sonar disruption

RFI

Three-phase filters are supplied as an option for factory mounting in the compressor power panels. They use a combination of high frequency inductors and capacitors to reduce noise in the critical 150kHz to 30MHz frequency range. The inductors act as open circuits and the capacitors act as short circuits at high frequencies while allowing the lower power line frequencies to pass untouched. The filters assist with cost effective compliance to Electro Magnetic Compatibility (EMC) directives, in a compact, efficient, light-weight design. The high common mode and differential mode reduction in the critical 150kHz to 30MHz frequencies assures that potential interference from AC drives is reduced or eliminated.

The filters are current-rated devices. In order to properly size a filter, it is necessary to know the operating voltage, and the input current rating of the drive. No derating or re-rating is necessary when applying the filter at voltages that are less than or equal to the maximum voltage listed on the filter.

The IEEE 519-1991 Standard

The Institute of Electrical and Electronics Engineers (IEEE) has developed a standard that defines acceptable limits of system current and voltage distortion. A simple form is available from McQuay that allows McQuay to determine compliance with IEEE 519-1991.

Line reactors, isolation transformers, or phase-shifting transformers can be required on some installations.

Figure 14, Typical WMC Power Wiring
Application Considerations

Pumps
To avoid the possibility of objectionable harmonics in the system piping, 4-pole, 1800/1500 rpm system pumps should be used. The condenser water pump(s) must be cycled off when the last chiller of the system cycles off. This will keep cold condenser water from migrating refrigerant to the condenser. Cold liquid refrigerant in the condenser can make start up difficult. In addition, turning off the condenser water pump(s) when the chillers are not operating will conserve energy.

Chilled Water Temperature
The maximum temperature of water entering the chiller on standby must not exceed 110°F (43.3°C). Maximum temperature entering on start-up must not exceed 90°F (32.2°C). Minimum chilled water leaving temperature without antifreeze is approximately 38°F (3.3°C).

Piping
Piping must be adequately supported to remove weight and strain on the chiller’s fittings and connections. Be sure piping is adequately insulated. Install a cleanable 20-mesh water strainer upstream of the evaporator and condenser. Install enough shutoff valves to permit draining water from the evaporator or condenser without draining the complete system.

CAUTION

Freeze Notice: The evaporator and condenser are not self-draining. Both must be blown out to completely remove water to help prevent freezup.

Include thermometers and pressure gauges at the chiller inlet and outlet connections and install air vents at the high points of piping. Where noise and vibration are critical and the unit is mounted on spring isolators, flexible piping and conduit connections are necessary. Install a flow switch or pressure differential switch in the leaving chilled water line, if one is not factory installed.

Filtering and Treatment
Owners and operators must be aware that if the unit is operating with a cooling tower, cleaning and flushing the cooling tower is required. Make sure tower blow-down or bleed-off is operating. Atmospheric air contains many contaminants, which increases the need for water treatment. The use of untreated water will result in corrosion, erosion, slime buildup, scaling, or algae formation. Water treatment service must be used. McQuay International is not responsible for damage or faulty operation from untreated or improperly treated water.

Special care must be taken when utilizing open system water that is usually not treated (such as lakes, rivers, and ponds). Special tube and water head material may be required to reduce damage from corrosion.

Low Condenser Water Temperature Operation
When ambient wet bulb temperature are lower than design, the entering condenser water temperature can be allowed to fall to improve chiller performance. This is especially true of an advanced design such as the McQuay WMC that features variable compressor speed.

It is an engineering fact that as the compressor discharge pressure is reduced the amount of power to pump a given amount of gas also is reduced. The reduction can result in significant energy savings.

However, as with most centrifugal chiller applications, a tower bypass valve must be installed. Figure 15 illustrates two temperature actuated tower bypass arrangements. The “Cold Weather” scheme provides better startup under cold ambient air temperature conditions. The check valve may be required to prevent entraining air at the pump inlet.
Minimum Condenser Water Temperature

The McQuay WMC centrifugal chiller will start and run with 55°F (12.8°C) entering condenser water temperature.

Variable Speed Chilled Water Pumping

Variable speed pumping involves changing system water flow relative to cooling load changes. McQuay centrifugal chillers are designed for this duty with two limitations.

First, the rate of change in the water flow needs to be slow, not greater than 10% of the change per minute. The chiller needs time to sense a load change and respond.

Second, the water velocity in the vessels must be 3 to 10 fps (0.91 and 3.0 m/sec). Below 3 fps (0.91 m/sec), laminar flow occurs which reduces heat transfer and causes erratic operation. Above 10 fps (3.0 m/sec), excessively high pressure drops and tube erosion occur. These flow limits can be determined from the McQuay selection program.

We recommend variable flow only in the evaporator because there is virtually no change in chiller efficiency compared to constant flow. In other words, there is no chiller energy penalty and considerable pumping energy can be saved. Although variable speed pumping can be done in the condenser loop, it is usually unwise. The intent of variable flow is to reduce pump horsepower. However, reducing condenser water flow increases the chiller’s condensing pressure, increasing the lift that the compressor must overcome which, in turn, increases the compressor’s energy use. Consequently, pump energy savings can be lost because the chiller operating power is significantly increased.

Low condenser flow can cause premature tube fouling and subsequent increased compressor power consumption. Increased cleaning and/or chemical use can also result.

Vibration Mounting

The WMC chillers are almost vibration-free. Consequently, floor mounted spring isolators are not usually required. Rubber mounting pads are shipped with each unit. It is wise to continue to use piping flexible connectors to reduce sound transmitted into the pipe and to allow for expansion and contraction.

System Water Volume

It is important to have adequate water volume in the system to provide an opportunity for the chiller to sense a load change, adjust to the change and stabilize. As the expected load change becomes more rapid, a greater water volume is needed. The system water volume is the total amount of water in the evaporator, air handling products and associated piping. If the water volume is too low, operational problems can occur including rapid compressor cycling, rapid loading and unloading of compressors, erratic refrigerant flow in the chiller, and loss of temperature control.

For normal comfort cooling applications where the cooling load changes relatively slowly, we recommend a minimum system volume of three minutes times the flow rate (gpm). For example, if
the design chiller flow rate is 400 gpm, we recommend a minimum system volume of 1200 gallons (400 gpm x 3 minutes).

For process applications where the cooling load can change rapidly, additional system water volume is needed. A process example would be a quench tank where the load would be stable until the hot material is dipped into the water tank. Then, the load would increase drastically. Large storage capacity will usually be required for this type of application.

System volume = \{400 \text{ gpm} \times 3 \text{ minutes}\} + \{(5 \text{ increment of 10\% increase}) \times (3 \text{ minutes}) \times 400 \text{ gpm}\} = 1800 \text{ gallons}

Since there are many other factors that can influence performance, systems can successfully operate below these suggestions. However, as the water volume decreases below these suggestions, the possibility of problems increases. We believe that these guidelines should be an industry standard and not just recommendations from McQuay.

System Pumps

Operation of the chilled water pump can be to 1) cycle the pump with the compressor, 2) operate continuously, or 3) start automatically by a remote source.

The cooling tower pump must cycle with the machine. The holding coil of the cooling tower pump motor starter must be rated at 115 volts, 60 Hz, with a maximum volt-amperage rating of 100. A control relay is required if the voltage-amperage rating is exceeded. See the Field Wiring Diagram on page 32 or in the cover of control panel for proper connections.

All interlock contacts must be rated for no less than 10 inductive amps. The alarm circuit provided in the control center utilizes 115-volts AC. The alarm used must not draw more than 10-volt amperes.

Use with On-Site Generators

WMC chillers have their total tonnage divided between two compressors that start sequentially and they are operated with variable frequency drives. These features make WMC chillers especially appropriate for use in applications where they may be required to run with on-site electrical generators. This is particularly true when the generators are used for temporary power when the utility power is lost.

Generator Sizing: Gas and diesel generators are sensitive to the compressor’s locked-rotor characteristics when the chillers start up. Use the electrical data supplied with the performance output sheet, obtained from the McQuay sales office, for generator sizing purposes. The chiller data sheet will show the RLA, which is for both compressors. Refer to Table 12 or Table 13 on the previous page to determine the LRA, based on the RLA. It is important to size the generator to handle the LRA at start up.

Starting/Stopping Procedure: The stopping of the chiller in the event of a power failure should be uneventful. The chiller will sense a loss of voltage and the compressors will stop, coasting down using power generated from their dynamic braking to maintain the bearing magnetic field. The stop signal will initiate a three-minute stop-to-start timer, effectively preventing compressor restart for three minutes. The timer is adjustable from three to fifteen minutes, but the recommended, and default value, is three minutes. This interval allows the generator sufficient time to get up to speed and stabilize. The chiller will restart automatically when the start-to-start timer expires.

Transfer Back to Grid Power: Proper transfer from stand-by generator power back to grid power is essential to avoid compressor damage.

⚠️ **CAUTION**

Stop the chiller before transferring supply power from the generator back to the utility power grid. Transferring power while the chiller is running can cause severe compressor damage.
The necessary procedure for reconnecting power from the generator back to the utility grid is shown below. These procedures are not peculiar to McQuay units only, but should be observed for any chiller manufacturer.

1. Set the generator to always run five minutes longer than the unit start-to-start timer, which could be set from 15 to 60 minutes. The actual setting can be viewed on the operator interface panel on the Setpoint/Timer screen.

2. Configure the transfer switch, provided with the generator, to automatically shut down the chiller before transfer is made. The automatic shut-off function can be accomplished through a BAS interface or with the “remote on/off” wiring connection shown in Figure 13. A start signal can be given anytime after the stop signal since the three-minute start-to-start timer will be in effect.

Chiller Control Power: For proper operation on standby power, the chiller control power must remain as factory-wired from a unit-mounted transformer. Do not supply chiller control power from an external power source because the chiller may not sense a loss of power and do a normal shutdown sequence.

Optimum Water Temperatures and Flow

A key to improving energy efficiency for any chiller is minimizing the compressor pressure lift. Reducing the lift reduces the compressor work, and hence its energy consumption per unit of output. The chiller typically has the largest motor of any component in a chilled water system.

Higher leaving chilled water temperatures

Warmer leaving chilled water temperatures will raise the compressor’s suction pressure and decrease the lift, improving efficiency. Using 45°F (7.0°C) leaving water instead of 42°F (5.5°C) will make a significant improvement.

Evaporator temperature drop

The industry standard has been a ten-degree temperature drop in the evaporator. Increasing the drop to 12 or 14 degrees will improve the evaporator heat transfer, raise the suction pressure, and improve chiller efficiency. Chilled water pump energy will also be reduced.

Condenser entering water temperature

As a general rule, a one-degree drop in condenser entering water temperature will reduce chiller energy consumption by two percent. Cooler water lowers the condensing pressure and reduces compressor work. One or two degrees can make a noticeable difference. The incremental cost of a larger tower can be small and provide a good return on investment.

Condenser water temperature rise

The industry standard of 3 gpm/ton or about a 9.5-degree delta-T seems to work well for most applications. Reducing condenser water flow to lower pumping energy will increase the water temperature rise, resulting in an increase in the compressor’s condensing pressure and energy consumption. This is usually not a productive strategy.

System analysis

Although McQuay is a proponent of analyzing the entire system, it is generally effective to place the chiller in the most efficient mode because it is, by far, a larger energy consumer than pumps.

The McQuay Energy Analyzer™ program is an excellent tool to investigate the entire system efficiency, quickly and accurately. It is especially good at comparing different system types and operating parameters. Contact your local McQuay sales office for assistance on your particular application.

For Best Chiller Efficiency

<table>
<thead>
<tr>
<th>Vessel</th>
<th>Activity</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaporator</td>
<td>Higher leaving water temperatures</td>
<td>44°F instead of 42°F</td>
</tr>
<tr>
<td>Evaporator</td>
<td>Higher water temperature drops</td>
<td>12 degrees F instead of 10 degrees</td>
</tr>
<tr>
<td>Evaporator</td>
<td>Lower flow rates</td>
<td>2.4 gpm/ton instead of 3.0 gpm/ton</td>
</tr>
<tr>
<td>Condenser</td>
<td>Lower entering water temperature</td>
<td>84°F instead of 85°F</td>
</tr>
<tr>
<td>Condenser</td>
<td>Higher flow rates (3.0 gpm/ton or higher)</td>
<td>3.0 gpm/ton instead of 2.5 gpm/ton</td>
</tr>
</tbody>
</table>
The designer must determine the proper chiller efficiency for a given application. The most efficient chiller is not always the best. A life cycle analysis (as performed by McQuay’s Energy Analyzer program, for example) is the only way to be sure of the best selection. Utility costs, load factors, maintenance costs, cost of capital, tax bracket; in other words, all the factors affecting owning cost, must be considered.

Generally, the attempts to save the last few full load kW are very costly. For example, the cost to go from 0.64 to 0.63 kW/ton could be very costly because of the large number of copper tubes that would have to be added to the heat exchangers.

Operating Limits:

- Maximum standby ambient temperature, 130°F (55°C)
- Leaving chilled water, 38°F to 60°F (3°C to 15°C), ice duty not available
- Maximum operating evaporator inlet fluid temperature, 66°F (19°C)
- Maximum startup evaporator inlet fluid temperature, 90°F (32°C)
- Maximum non-operating inlet fluid temperature, 100°F (38°C)
- Minimum condenser water entering temperature, 55°F (12.8°C)
- Maximum entering condenser water temperature, 105°F (40.1°C)
- Maximum leaving condenser water temperature, 115°F (46.1°C)

Options and Accessories

Vessels

- **Marine water boxes**
 Provides tube access for inspection, cleaning, and removal without dismantling water piping.

- **Flanges (Victaulic® connections are standard)**
 ANSI raised face flanges on either the evaporator or condenser. Mating flanges are by others.

- **0.028 or 0.035 in. tube wall thickness**
 For applications with aggressive water conditions requiring thicker tube walls.

- **Stainless steel or titanium tube material**
 For use with corrosive water conditions, includes clad tube sheets and epoxy coated water heads.

- **Stainless steel or titanium clad or epoxy coated tube sheets**
 For applications with aggressive water conditions.

- **Water side vessel construction of 300 psi (150 psi is standard)**
 For high pressure water systems, typically high-rise building construction.

- **Single insulation, 3/4 inch, on evaporator (including heads) and suction piping**
 Insulation, either optional factory-installed or field-installed is generally required on all installations.

- **Double insulation, 1 ½ inch, on evaporator (including heads) and suction piping**
 For high humidity locations and ice making applications.

- **Special vessel codes**
 Including Chinese and Canadian Registration (CRN).
Controls

BAS interface module.
Factory-installed on the unit controller for the applicable protocol being used. (Can also be retrofit.)

Unit

Factory disassembly
When required for rigging, the unit can be disassembled at the factory and shipped knocked-down.

Export packaging
Can be either slat or full crate for additional protection during shipment. Units normally shipped in containers.

Shipping bag
Shrink-wrap bag covers entire unit and protects it from possible dirt and grime accumulation during transit.

Pumpout Unit, with or without storage vessel
Available in a variety of sizes. Details are in Catalog WSCWDC.

Refrigerant monitor
For remote mounting including accessories such as 4-20ma signal, strobe light, audible horn, air pick-up filter.

Extended warranties
Extended 1, 2, 3, or 4 year warranties for parts only or for parts and labor are available for the entire unit or compressor/motor only.

Witness performance test
The standard full load run test is performed in the presence of the customer under the supervision of a McQuay engineer, includes compilation of the test data. Travel and local expenses are not included.

Certified performance test
The standard run test is performed under the supervision of a McQuay engineer, data is compiled and certified.

Spring Vibration Isolators
Spring isolators for use in special situations. The unit has extremely low vibration and sound levels without isolators.

Electrical

Single point power connection
Permits a single power lead to a unit-mounted terminal box, in lieu of standard separate power leads to each circuit’s power panel.

High short circuit current rating
65kA panel rating available only on single point connection with either power block or disconnect switch. Applies to the two main unit power panels.

Harmonic filter
Field-installed option. See page 33 for details.

EMI filter
Factory-installed option. Radio interference filter. See page 33 for details.

NEMA 4 or NEMA 12 construction

Ground Fault Protection
Protects equipment from damage from line-to-ground fault currents less than those required for conductor protection.
Refrigerant Monitors

Detects all halogen based refrigerants
Optional analog output for remote monitoring
Visual alarm indication
Fresh air inlet for automatic re-zeroing
ETL listed

Continuous digital display of system status
System malfunction detection and indication
Can sample up to 250 feet (76 meters) away
Multi-unit capability in a single monitor
UL STD 3101-1 and CAN/CSA 1010.1

MODELS

Model RM-1 1 Zone Monitor
Model RM-4 4 Zone Monitor
Model RM-8 8 Zone Monitor
Model RM-16 16 Zone Model

SPECIFICATIONS

Sensitivity: As low as 1 PPM
Range: 0 to 1000 PPM
Power: 120/240 Volt, 50/60 Hz

Operating Environment: 32°F-125°F

Weight: 25 lbs. (11 kg)

Alarm Trip Points (Percent of Full Scale): Low Alarm=0 to 100, Main Alarm=0 to 100, High Alarm=100

Alarm Outputs: Indicator Light, Alarm Relays, RS232 Computer Interface

OPTIONS and ACCESSORIES

Analog Output, 4-20 ma (RMA-AO)
Remote Strobe Light, 120 V (RMA-L)
Remote Horn, 120V (RMA-H)
Remote Light and Horn Set (RMA-LH)
Plastic Pick-up Tubing, ¼ inch OD, 250 ft. Reel (RMA-T)
Diaphragm Pump (RMA-P) *
Course Replacement Filter (RMA-CF) *
5 Micron Replacement Filter (RMA-F) *

(*) Replacement parts. Original pump and filters are shipped with unit.

SYSTEM DESCRIPTION

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Required</th>
<th>Supplied with Unit</th>
<th>Supplied by Customer</th>
<th>Optional</th>
<th>Available from McQuay</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16 gauge 3 conductor wire</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18 or 22 gauge 2 conductor cable</td>
<td>No</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Required for horn, strobe, or combination</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2 conductor twisted pair shielded cable</td>
<td>No</td>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Required for remote analog output</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Remote horn</td>
<td>No</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Remote strobe light</td>
<td>No</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Remote horn and strobe light set</td>
<td>No</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1/4 in. x 1/8 in. ID plastic pick-up tubing</td>
<td>Yes</td>
<td>No</td>
<td></td>
<td>Yes</td>
<td>Available in 250 foot reels</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Course filter</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td>For mounting at the end of the tubing</td>
<td></td>
</tr>
</tbody>
</table>

Catalog WMC-1 41
Warranty Statement

Limited Warranty

Consult your local McQuay Representative for warranty details. Refer to Form 933-43285Y. To find your local McQuay Representative, go to www.mcquay.com.
PART 1 — GENERAL

1.1 SUMMARY
Section includes design, performance criteria, refrigerants, controls, and installation requirements for water-cooled centrifugal chillers.

1.2 REFERENCES
Comply with the following codes and standards

ARI 550/590
ANSI/ASHRAE 15
OSHA as adopted by the State
ASME Section VIII

1.3 SUBMITTALS
Submittals shall include the following:
A. Dimensioned plan and elevation view, including required clearances, and location of all field piping and electrical connections.
B. Summaries of all auxiliary utility requirements such as: electricity, water, air, etc. Summary shall indicate quality and quantity of each required utility.
C. Diagram of control system indicating points for field interface and field connection. Diagram shall fully depict field and factory wiring.
D. Manufacturer’s certified performance data at full load plus IPLV or NPLV.
E. Installation and Operating Manuals.

1.4 QUALITY ASSURANCE
A. Regulatory Requirements: Comply with the codes and standards in Section 1.2.
B. Chiller manufacturer plant shall be ISO Registered.

1.5 DELIVERY AND HANDLING
A. Chillers shall be delivered to the job site completely assembled and charged with refrigerant.
B. Comply with the manufacturer’s instructions for rigging and transporting units. Leave protective covers in place until installation.

1.6 WARRANTY
The refrigeration equipment manufacturer’s warranty shall be for a period of (one) -- Or -- (two) -- Or-- (five) years from date of equipment start or 18 months from shipment whichever occurs first. The warranty shall include parts and labor costs for the repair or replacement of defects in material or workmanship. The refrigerant warranty shall match the parts and labor warranty.
1.7 MAINTENANCE
 A. Maintenance of the chillers shall be the responsibility of the owner.

PART 2 — PRODUCTS

2.1 ACCEPTABLE MANUFACTURERS
 A. McQuay International
 B. (Approved Equal)

2.2 UNIT DESCRIPTION
 Provide and install as shown on the plans a factory assembled, charged, and run-tested water-cooled packaged chiller. Each unit shall be complete with two multi-stage, oil-free, magnetic bearing, hermetic centrifugal compressors. Each compressor shall have variable frequency drive operating in concert with inlet guide vanes for optimized unit part load efficiency. The evaporator, condenser, and expansion valve shall be common to both of the compressors. The chiller unit shall be capable of running on one compressor with the other compressor or any of its auxiliaries inoperable or removed.

2.3 DESIGN REQUIREMENTS
 A. General: Provide a complete water-cooled, dual hermetic compressor centrifugal water chiller as specified herein. Machine shall be provided according to standards, Section 1.2. In general, unit shall consist of two magnetic bearing, completely oil-free, compressors, refrigerant condenser and evaporator, and control systems including variable frequency drive, operating controls and equipment protection controls. Note: Chillers shall be charged with a refrigerant such as HFC-134a, not subject to phase-out by the Montreal Protocol and the U. S. Clean Air Act.
 B. Performance: Refer to schedule on the drawings. The chiller shall be capable of stable operation to ten percent of full load with standard ARI entering condensing water relief without hot gas bypass.
 C. Acoustics: Sound pressure for the unit shall not exceed the following specified levels. Provide the necessary acoustic treatment to chiller as required. Sound data shall be measured according to ARI Standard 575-87 and shall be in dB. Data shall be the highest levels recorded at all load points.

 Octave Band

 63 125 250 500 1000 2000 4000 8000 dba

2.4 CHILLER COMPONENTS
 A. Compressors:
 1. The unit shall have two two-stage, magnetic bearing, oil-free, hermetic centrifugal compressors. The compressor drive train shall be capable of coming to a controlled, safe stop in the event of a power failure.
2. Movable inlet guide vanes, acting together with variable speed, shall provide unloading. A microprocessor controller, dedicated to each compressor shall coordinate the vane and speed control to provide optimum unit efficiency.

B. Refrigerant Evaporator and Condenser:

1. Evaporator and condenser shall be of the shell-and-tube type, designed, constructed, tested and stamped according to the requirements of the ASME Code, Section VIII. Regardless of the operating pressure, the refrigerant side of each vessel will bear the ASME stamp indicating compliance with the code and indicating a test pressure of 1.1 times the working pressure but not less than 100 psig. Provide intermediate tube supports at a maximum of 18 inch spacing.

2. Tubes shall be enhanced for maximum heat transfer, rolled into steel tube sheets and sealed with Locktite® or equal sealer. The tubes shall be individually replaceable and secured to the intermediate supports without rolling.

3. Provide sufficient isolation valves and condenser volume to hold full refrigerant charge in the condenser during servicing or provide a separate pumpout system and storage tank sufficient to hold the charge of the largest unit being furnished.

4. The water sides shall be designed for a minimum of 150 psig or as specified elsewhere. Vents and drains shall be provided.

5. Evaporator minimum refrigerant temperature shall be 33°F.

6. An electronic expansion valve shall control refrigerant flow to the evaporator. Fixed orifice devices or float controls with hot gas bypass are not acceptable because of inefficient control at low load conditions. The liquid line shall have a moisture indicating sight glass.

7. The evaporator and condenser shall be separate shells. A single shell containing both vessel functions is not acceptable because of the possibility of internal leaks.

8. Reseat type spring loaded pressure relief valves according to ASHRAE-15 safety code shall be furnished. The evaporator shall be provided with single or multiple valves. The condenser shall be provided with dual relief valves equipped with a transfer valve so one valve can be removed for testing or replacement without loss of refrigerant or removal of refrigerant from the vessel. Rupture disks are not acceptable.

9. The evaporator, including water heads, suction line, and any other component or part of a component subject to condensing moisture shall be insulated with UL recognized 3/4 inch closed cell insulation. All joints and seams shall be carefully sealed to form a vapor barrier.

10. Provide factory-mounted and wired, thermal dispersion water flow switches on each vessel to prevent unit operation with no water flow.
C. Prime Mover: Permanent-magnet, synchronous motor of the hermetic type, of sufficient size to efficiently fulfill compressor horsepower requirements. Motor shall be liquid refrigerant cooled with internal thermal overload protection devices embedded in the winding of each phase. Motor shall be compatible with variable frequency drive operation.

D. Variable Frequency Drive (VFD)

1. The chiller shall be equipped with a Variable Frequency Drive (VFD) to automatically regulate each compressor speed in response to cooling load and compressor pressure lift. The chiller control shall coordinate compressor speed and guide vane position to optimize chiller efficiency.

2. The unit shall be equipped with a line reactor.

E. CHILLER CONTROL

The unit shall have distributed microprocessor-based control architecture consisting of a VGA touchscreen operator interface, a controller for each compressor and a unit controller. The touchscreen shall display the unit operating parameters, accept setpoint changes (password protected) and be capable of resetting faults and alarms. The following trended parameters shall be displayed:

- Entering and leaving chilled water temps
- Entering and leaving condenser water temps
- Evaporator saturated refrigerant pressure
- Condenser saturated refrigerant pressure
- Percent of 100% speed (per compressor)
- % rated load amps for entire unit

In addition to the trended items above, other real-time operating parameters are also shown on the touchscreen. These items can be displayed in two ways: by chiller graphic showing each component or from a color-coded, bar chart format. At a minimum, the following critical areas must be monitored:

Complete fault history shall be displayed using an easy to decipher, color coded set of messages that are date and time stamped. The last 25 faults shall be downloadable from the USB port drive.

Automatic corrective action to reduce unnecessary cycling shall be accomplished through pre-emptive control of low evaporator or high discharge pressure conditions to keep the unit operating through abnormal transient conditions.

System specific, chiller plant architecture software shall be employed to display the chiller, piping, pumps and cooling tower. Chiller plant optimization software for up to 3 chillers shall also be available to provide automatic control of: evaporator and condenser pumps (primary and standby), up to 4 stages of cooling tower fans and a cooling tower modulating bypass valve or cooling tower variable frequency drives.
The unit controller shall support operation on a BACnet, Modbus or LONWORKS network via a factory-installed communication module.

Factory mounted DDC controller(s) shall support operation on a BACnet®, Modbus® or LONMARKS® network via one of the data link / physical layers listed below as specified by the successful Building Automation System (BAS) supplier.

- BACnet MS/TP master (Clause 9)
- BACnet IP, (Annex J)
- BACnet ISO 8802-3, (Ethernet)
- LONMARKS FTT-10A. The unit controller shall be LONMARKS® certified.

The information communicated between the BAS and the factory mounted unit controllers shall include the reading and writing of data to allow unit monitoring, control and alarm notification as specified in the unit sequence of operation and the unit points list.

For chillers communicating over a LONMARK network, the corresponding LONMARK eXternal Interface File (XIF) shall be provided with the chiller submittal data.

All communication from the chiller unit controller as specified in the points list shall be via standard BACnet objects. Proprietary BACnet objects shall not be allowed. BACnet communications shall conform to the BACnet protocol (ANSI/ASHRAE135-2001). A BACnet Protocol Implementation Conformance Statement (PICS) shall be provided along with the unit submittal.

2.5. OPTIONAL ITEMS

The following optional items shall be furnished:

1. Marine water boxes
2. Flanges (Victaulic® connections are standard)
3. 0.028 or 0.035 in. tube wall thickness
4. Stainless steel or titanium tube material
5. Stainless steel or titanium clad or epoxy coated tube sheets
6. Water side vessel construction of 300 psi (150 psi is standard)
7. Single insulation, 3/4 inch, on evaporator (including heads), suction piping, and motor end-bell
8. Double insulation, 1 ½ inch, on evaporator (including heads), suction piping, and motor end-bell
9. BAS interface module for the applicable protocol being used.
10. Export packaging
11. Shipping bag
12. Pumpout Unit, with or without storage vessel
13. Refrigerant monitor
14. Extended warranties
15. Witness performance test
16. Certified performance test
17. Single Point Power Connection
18. EMI

PART 3 — EXECUTION

3.1 INSTALLATION
A. Install per manufacturer’s requirements, shop drawings, and Contract Documents.
B. Adjust chiller alignment on foundations, or subbases as called for on drawings.
C. Arrange piping to allow for dismantling to permit head removal and tube cleaning.
D. Coordinate electrical installation with electrical contractor.
E. Coordinate controls with control contractor.
F. Provide all material required for a fully operational and functional chiller.

3.2 START-UP
A. Units shall be factory charged with the proper refrigerant.
B. Factory Start-Up Services: Provide for as long a time as is necessary to ensure proper operation of the unit, but in no case for less than two full working days. During the period of start-up, The Start-up Technician shall instruct the Owner’s representative in proper care and operation of the unit.
This document contains the most current product information as of this printing. For the most up-to-date product information, please go to www.mcquay.com.